Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0296390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315701

RESUMO

Estradiol is an important regulator of bone accumulation and maintenance. Circulating estrogens are primarily produced by the gonads. Aromatase, the enzyme responsible for the conversion of androgens to estrogen, is expressed by bone marrow cells (BMCs) of both hematopoietic and nonhematopoietic origin. While the significance of gonad-derived estradiol to bone health has been investigated, there is limited understanding regarding the relative contribution of BMC derived estrogens to bone metabolism. To elucidate the role of BMC derived estrogens in male bone, irradiated wild-type C57BL/6J mice received bone marrow cells transplanted from either WT (WT(WT)) or aromatase-deficient (WT(ArKO)) mice. MicroCT was acquired on lumbar vertebra to assess bone quantity and quality. WT(ArKO) animals had greater trabecular bone volume (BV/TV p = 0.002), with a higher trabecular number (p = 0.008), connectivity density (p = 0.017), and bone mineral content (p = 0.004). In cortical bone, WT(ArKO) animals exhibited smaller cortical pores and lower cortical porosity (p = 0.02). Static histomorphometry revealed fewer osteoclasts per bone surface (Oc.S/BS%), osteoclasts on the erosion surface (ES(Oc+)/BS, p = 0.04) and low number of osteoclasts per bone perimeter (N.Oc/B.Pm, p = 0.01) in WT(ArKO). Osteoblast-associated parameters in WT(ArKO) were lower but not statistically different from WT(WT). Dynamic histomorphometry suggested similar bone formation indices' patterns with lower mean values in mineral apposition rate, label separation, and BFR/BS in WT(ArKO) animals. Ex vivo bone cell differentiation assays demonstrated relative decreased osteoblast differentiation and ability to form mineralized nodules. This study demonstrates a role of local 17ß-estradiol production by BMCs for regulating the quantity and quality of bone in male mice. Underlying in vivo cellular and molecular mechanisms require further study.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Aromatase , Transplante de Medula Óssea , Ginecomastia , Infertilidade Masculina , Erros Inatos do Metabolismo , Camundongos , Animais , Masculino , Aromatase/genética , Aromatase/metabolismo , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Porosidade , Camundongos Endogâmicos C57BL , Estrogênios , Estradiol , Células da Medula Óssea/metabolismo , Coluna Vertebral/metabolismo , Camundongos Knockout
2.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563272

RESUMO

Obesity is a leading cause of preventable death and morbidity. To elucidate the mechanisms connecting metabolically active brown adipose tissue (BAT) and metabolic health may provide insights into methods of treatment for obesity-related conditions. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18FDG-PET/CT) is traditionally used to image human BAT activity. However, the primary energy source of BAT is derived from intracellular fatty acids and not glucose. Beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) is a fatty acid analogue amenable to in vivo imaging by single photon emission computed tomography/CT (SPECT/CT) when radiolabeled with iodine isotopes. In this study, we compare the use of 18FDG-PET/CT and 125I-BMIPP-SPECT/CT for fat imaging to ascertain whether BMIPP is a more robust candidate for the non-invasive evaluation of metabolically active adipose depots. Interscapular BAT, inguinal white adipose tissue (iWAT), and gonadal white adipose tissue (gWAT) uptake of 18FDG and 125I-BMIPP was quantified in mice following treatment with the BAT-stimulating drug CL-316,243 or saline vehicle control. After CL-316,243 treatment, uptake of both radiotracers increased in BAT and iWAT. The standard uptake value (SUVmean) for 18FDG and 125I-BMIPP significantly correlated in these depots, although uptake of 125I-BMIPP in BAT and iWAT more closely mimicked the fold-change in metabolic rate as measured by an extracellular flux analyzer. Herein, we find that imaging BAT with the radioiodinated fatty acid analogue BMIPP yields more physiologically relevant data than 18FDG-PET/CT, and its conventional use may be a pivotal tool for evaluating BAT in both mice and humans.


Assuntos
Tecido Adiposo Marrom , Fluordesoxiglucose F18 , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Animais , Ácidos Graxos/metabolismo , Fluordesoxiglucose F18/metabolismo , Iodobenzenos , Camundongos , Obesidade/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos
3.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768982

RESUMO

Diabetic foot infection is the leading cause of non-traumatic lower limb amputations worldwide. In addition, diabetes mellitus and sequela of the disease are increasing in prevalence. In 2017, 9.4% of Americans were diagnosed with diabetes mellitus (DM). The growing pervasiveness and financial implications of diabetic foot infection (DFI) indicate an acute need for improved clinical assessment and treatment. Complex pathophysiology and suboptimal specificity of current non-invasive imaging modalities have made diagnosis and treatment response challenging. Current anatomical and molecular clinical imaging strategies have mainly targeted the host's immune responses rather than the unique metabolism of the invading microorganism. Advances in imaging have the potential to reduce the impact of these problems and improve the assessment of DFI, particularly in distinguishing infection of soft tissue alone from osteomyelitis (OM). This review presents a summary of the known pathophysiology of DFI, the molecular basis of current and emerging diagnostic imaging techniques, and the mechanistic links of these imaging techniques to the pathophysiology of diabetic foot infections.


Assuntos
Complicações do Diabetes/patologia , Pé Diabético/patologia , Animais , Diabetes Mellitus/patologia , Pé Diabético/etiologia , Humanos , Imagem Molecular/métodos , Osteomielite/patologia
4.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904399

RESUMO

Adiponectin is essential for the regulation of tissue substrate utilization and systemic insulin sensitivity. Clinical studies have suggested a positive association of circulating adiponectin with healthspan and lifespan. However, the direct effects of adiponectin on promoting healthspan and lifespan remain unexplored. Here, we are using an adiponectin null mouse and a transgenic adiponectin overexpression model. We directly assessed the effects of circulating adiponectin on the aging process and found that adiponectin null mice display exacerbated age-related glucose and lipid metabolism disorders. Moreover, adiponectin null mice have a significantly shortened lifespan on both chow and high-fat diet. In contrast, a transgenic mouse model with elevated circulating adiponectin levels has a dramatically improved systemic insulin sensitivity, reduced age-related tissue inflammation and fibrosis, and a prolonged healthspan and median lifespan. These results support a role of adiponectin as an essential regulator for healthspan and lifespan.


Assuntos
Adiponectina/fisiologia , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Feminino , Glucose/metabolismo , Homeostase , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Transgênicos
5.
ACS Infect Dis ; 7(2): 347-361, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33476123

RESUMO

Since most d-amino acids (DAAs) are utilized by bacterial cells but not by mammalian eukaryotic hosts, recently DAA-based molecular imaging strategies have been extensively explored for noninvasively differentiating bacterial infections from the host's inflammatory responses. Given glutamine's pivotal role in bacterial survival, cell growth, biofilm formation, and even virulence, here we report a new positron emission tomography (PET) imaging approach using d-5-[11C]glutamine (d-[5-11C]-Gln) for potential clinical assessment of bacterial infection through a comparative study with its l-isomer counterpart, l-[5-11C]-Gln. In both control and infected mice, l-[5-11C]-Gln had substantially higher uptake levels than d-[5-11C]-Gln in most organs except the kidneys, showing the expected higher use of l-[5-11C]-Gln by mammalian tissues and more efficient renal excretion of d-[5-11C]-Gln. Importantly, our work demonstrates that PET imaging with d-[5-11C]-Gln is capable of detecting infections induced by both Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) in a dual-infection murine myositis model with significantly higher infection-to-background contrast than with l-[5-11C]-Gln (in E. coli, 1.64; in MRSA, 2.62, p = 0.0004). This can be attributed to the fact that d-[5-11C]-Gln is utilized by bacteria while being more efficiently cleared from the host tissues. We confirmed the bacterial infection imaging specificity of d-[5-11C]-Gln by comparing its uptake in active bacterial infections versus sterile inflammation and with 2-deoxy-2-[18F]fluoroglucose ([18F]FDG). These results together demonstrate the translational potential of PET imaging with d-[5-11C]-Gln for the noninvasive detection of bacterial infectious diseases in humans.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Animais , Bactérias , Escherichia coli , Glutamina , Camundongos
6.
Int J Mol Sci ; 20(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694216

RESUMO

Currently, obesity is one of the leading causes death in the world. Shortly before 2000, researchers began describing metabolically active adipose tissue on cancer-surveillance 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in adult humans. This tissue generates heat through mitochondrial uncoupling and functions similar to classical brown and beige adipose tissue in mice. Despite extensive research, human brown/beige fat's role in resistance to obesity in humans has not yet been fully delineated. FDG uptake is the de facto gold standard imaging technique when studying brown adipose tissue, although it has not been rigorously compared to other techniques. We, therefore, present a concise review of established and emerging methods to image brown adipose tissue activity in humans. Reviewed modalities include anatomic imaging with CT and magnetic resonance imaging (MRI); molecular imaging with FDG, fatty acids, and acetate; and emerging techniques. FDG-PET/CT is the most commonly used modality because of its widespread use in cancer imaging, but there are mechanistic reasons to believe other radiotracers may be more sensitive and accurate at detecting brown adipose tissue activity. Radiation-free modalities may help the longitudinal study of brown adipose tissue activity in the future.


Assuntos
Tecido Adiposo Marrom/diagnóstico por imagem , Obesidade/diagnóstico por imagem , Acetatos/análise , Acetatos/metabolismo , Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Fluordesoxiglucose F18/análise , Fluordesoxiglucose F18/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Obesidade/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...